Skewness in Stock Returns:
Reconciling the Evidence on Firm Versus Aggregate Returns*

Rui Albuquerque
Boston University
Católica-Lisbon School of Business and Economics
November 24, 2011

Abstract

Aggregate stock market returns display negative skewness. Firm stock returns display positive skewness. The large literature that tries to explain the first stylized fact ignores the second. This paper provides a unified theory that reconciles the two facts by explicitly modeling firm-level heterogeneity. I build a stationary asset pricing model of firm announcement events where firm returns display positive skewness. I then show that cross-sectional heterogeneity in firm announcement events can lead to conditional asymmetric stock return correlations and negative skewness in aggregate returns. I provide evidence consistent with the model predictions. (JEL G12, G14, D82)

*I would like to thank Pietro Veronesi (the Editor) and two anonymous referees for constructive suggestions, and also the comments from Adlai Fisher, Marcin Kacperczyk, Emilio Osambela, Lukasz Pomorski, Clara Raposo, Martin Schneider, Kevin Sheppard, and Grigory Vilkov as well as from seminar participants at Boston University, Católica-Lisbon, ESSEC, Michigan Ross School of Business, Said School of Business and Oxford-Man Institute of Oxford University, University of Miami, and at the 2010 European Finance Association and the 2011 UBC Winter Finance conferences. Financial support from a grant from the Fundação para a Ciência e Tecnologia is gratefully acknowledged. Send correspondence to: Finance Department, Boston University School of Management, 595 Commonwealth Avenue, Boston, MA 02215. The author is also affiliated with the Centre for Economic Policy Research and the European Corporate Governance Institute. Email: ralbuque@bu.edu. The usual disclaimer applies.
Aggregate stock market returns display negative skewness, the propensity to generate negative returns with greater probability than suggested by a symmetric distribution. A large body of literature has aimed to explain this stylized fact about the distribution of aggregate stock returns (e.g., Fama 1965; Black 1976; Christie 1982; Blanchard and Watson 1982; Pindyck 1984; French, Schwert, and Stambaugh 1987; Hong and Stein 2003). The evidence on aggregate returns contrasts with another stylized fact, namely, that firm-level returns are positively skewed. For this reason, theories of negative skewness that model single-firm stock markets necessarily depict an incomplete picture. In this paper I provide a unified theory for both stylized facts by explicitly modeling firm-level heterogeneity and studying the effects of aggregation, and present evidence consistent with the theory.

The implications from the disconnect between firm-level return skewness and aggregate return skewness are best illustrated using the definition of sample skewness of a portfolio return. Skewness of a portfolio return is the sum of mean firm-return skewness and co-skewness terms. Because mean firm skewness is positive, negative portfolio-return skewness must be caused by negative co-skewness terms. The co-skewness terms capture the average co-movement in one firm’s return with the variance of the portfolio that comprises the remaining firms. Thus, co-skewness depends on the cross-sectional heterogeneity of firm co-movement, which makes the observed negative skewness in aggregate returns a cross-sectional phenomenon.

This paper argues that the behavior of stock prices around certain firm announcement events is consistent with the existence of positive skewness in firm returns and that cross-sectional heterogeneity in the timing of these events can account for the negative skewness in aggregate returns.

The paper provides a stationary asset pricing model of cash payout and earnings announcement events that captures the basic stylized facts on volatility and mean returns around such events. When cash payouts are periodic, cash flow news is discounted according
to the time remaining until the next payout, and the impact of cash flow news on the conditional return volatility is greater for news released closer to the payout. The model predicts that conditional volatility exhibits a spike around the payout event despite homoscedastic cash-flow news shocks. The presence of a risk-return tradeoff in the model implies that this property applies also to conditional mean returns, and the rarity of spikes induces positive skewness in conditional mean returns. Similarly, the model predicts conditionally higher return volatility and mean returns around earnings announcement events due to large contemporaneous information flows. Firm returns may thus display sporadic and short-lived periods of high volatility and high mean returns around earnings announcements, and positive skewness in conditional mean returns.

The simplicity of the model allows for a complete characterization of the conditional and unconditional distributional properties of equilibrium returns. I show that the unconditional distribution of equilibrium returns is a mixture of normals distribution. Under a mixture of normals distribution, skewness in stock returns is given by two components. The first component is skewness in conditional mean returns. The second component captures the association between expected returns and conditional return variance and is positive given the risk-return tradeoff imbedded in the model. With both terms positive, the model can generate positive skewness in firm-level stock returns.

To study market return skewness, I introduce heterogeneity in firms’ announcement events. When firms have different announcement event dates, the high mean return and return volatility of some firms around their event date contrasts with the low return volatility of the portfolio of the remaining firms and may generate negative co-skewness in the market portfolio. In the model, sharp stock market downturns are likely to occur during an announcement season in which a significant fraction of firms displays high return volatility and strong co-movement with the market, while the rest display low expected returns and low return volatility. These periods generate conditional asymmetry in stock correlations:
Stocks become more strongly correlated with the market return in a market downturn than in a market upturn.

The paper provides evidence consistent with the above model predictions. Using Centre for Research in Security Prices (CRSP) daily stock returns to compute skewness over six-month periods from 1973 to 2009, I document two stylized facts. First, firm-level skewness is higher than aggregate skewness 96% of the time. Second, firm-level return skewness is always positive (except in the second half of 1987), whereas market skewness is almost always negative.

The evidence that the cross-sectional dispersion in event dates can produce the correct sign for aggregate return co-skewness uses data on earnings announcement events. As in the model, earnings announcements are associated with brief periods of high volatility and high mean returns (e.g., Beaver 1968; Ball and Kothari 1991; Cohen, Dey, Lys, and Sunder 2007). I use earnings announcement dates over the 1973 to 2009 period from the merged CRSP/Compustat quarterly file. I construct two experiments, both of which use daily return data over six-month periods. In the first experiment, I form portfolios of firms based on the calendar week of their first earnings announcement in each semester. I then group the firms in the first portfolio (first-week announcers) with those firms announcing \(k \) weeks later and report the six-month portfolio return skewness. I show that, as in the model, there is a symmetric U-shaped pattern in skewness: The portfolio of firms that announce in weeks 1 and 2 has similar return skewness to the portfolio of firms that announce in weeks 13 and 1, and their skewness is higher than the skewness in any other portfolio configuration.

In the second experiment, I form portfolios of firms that announce in weeks 1 through \(k \) in the quarter for \(k = 2, \ldots, 13 \), and report the respective portfolio return skewness. This experiment constructs stock markets with announcement seasons. I show that, consistent with the model, there is a negative relationship between skewness and the increased heterogeneity that results from adding dispersion in event dates. I also show that portfolio skewness in the
model can be negative if sufficient heterogeneity in event dates is allowed.

The predictive power of the model hinges on information flowing to the market in the form of announcement seasons. Consistent with other studies (e.g., Chambers and Penman 1984; Kross and Schroeder 1984), I show that firms in the United States tend to announce between weeks two and eight in each quarter, giving rise to an earnings announcement season. The beginning of an announcement season is also the period in the model that most contributes to the overall negative skewness in the market. Consistent with this model prediction, I split aggregate skewness into its weekly components and document that aggregate skewness is particularly negative around the beginning of an earnings announcement season.

An alternative explanation for why market skewness differs in sign from firm skewness is the existence of a negatively skewed return factor (see Duffee 1995). Following Duffee (1995), I remove the market return—a negatively skewed factor—from firm returns to obtain “idiosyncratic” returns. I show that while some results are weaker when CAPM-based idiosyncratic returns are used, the evidence is still broadly consistent with the model. Ideally, the use of structural models that nest various theories of negative aggregate skewness can provide for more statistically powerful identification strategies.

The model is related to the literature that analyzes the flow of information in the stock market (e.g., He and Wang 1995), and the literature that studies properties of stock returns around public news events (e.g., Kim and Verrecchia 1991, 1994). Especially relevant is the work of Acharya, DeMarzo, and Kremer (forthcoming). They study the optimal release of information and the clustering of announcements upon public news releases. In their model, as in Dye (1990), firms delay the release of bad news, which gives rise to positively skewed firm values. In addition, they show that when firms can preempt the release of public industry news, there is clustering of bad news upon the announcement, which, they argue, could give rise to conditional negative aggregate skewness. There are two main differences between their setting and mine. First, the mechanism in my paper does not rely on the endogeneity of the
decision to release information. Acharya et al. is a model of voluntary disclosures, which are rare and difficult to predict (see Bhojraj, Li, and Yang 2010). In this paper, I model and present evidence based on earnings announcements, which are mandatory and generally more predictable (e.g., Givoly and Palmon 1982; Chambers and Penman 1984). Second, Acharya et al. present a result about conditional skewness, whereas my result and the data presented speak to unconditional skewness in market returns.

Many studies have focused on asymmetric volatility as an explanation for negative skewness in aggregate stock returns. Black (1976) and Christie (1982) posit the existence of a leverage effect, whereby a low price leads to increased market leverage, which in turn leads to high volatility (see also Veronesi 1999). Pindyck (1984), French et al. (1987), Campbell and Hentschel (1992), Bekaert and Wu (2000), Wu (2001), and Veronesi (2004) further propose the existence of a volatility feedback effect, whereby high volatility is associated with a high risk premium and a low price. Blanchard and Watson (1982) show that negative skewness can result from the bursting of stock price bubbles. Hong and Stein (2003) hypothesize that short sales constraints limit the market’s ability to incorporate bad news. According to their model, when more bad news arrives in the market, the price responds to the cumulative effect of news and falls at a time when volatility may be high (however, see Bris, Goetzmann, and Zhu 2007). These papers have made important contributions to our understanding of the dynamics of return volatility and skewness, but they do not address the disconnect between firm skewness and market skewness. The current paper contributes to this literature by providing a bottom-up theory for negative skewness in aggregate stock returns that explicitly models positive skewness in firm-level returns and firm-level heterogeneity. This paper also contributes to the literature by documenting empirically the sources of negative skewness in aggregate returns: Asymmetric correlations between firm and market returns explain the negative skewness in market returns in this paper. This prediction is consistent with the conditional asymmetry in stock correlations found in Longin and Solnik (2001) and
Ang and Chen (2002) where market downturns are shown to be associated with higher stock correlations.

The model in this paper is consistent with the evidence from dividend and earnings announcements. Aharony and Swary (1980), Kalay and Loewenstein (1985), and Amihud and Li (2006) show that dividend announcements are associated with high returns and high volatility of stock returns. Beaver (1968), Givoly and Palmon (1982), Ball and Kothari (1991), Cohen et al. (2007), and others show that the high expected returns around earnings announcements are also associated with high volatility. Patton and Verardo (2010) document an economically and statistically significant increase in firm beta on days of earnings announcements. Finally, there is evidence that firm-level stock returns are well described by a mixture of normals distribution (see Kon 1984; Zangari 1996; Haas, Mittnik, and Paolella 2004).

The paper is organized as follows. Section 1 presents several facts about skewness and discusses the need to model cross-sectional heterogeneity. Section 2 describes the basic model and presents the stock market equilibrium. Section 3 extends the model to incomplete information and earnings announcement events. Section 4 analyzes the skewness properties of aggregate stock returns. Section 5 presents evidence on the paper’s main hypotheses, and Section 6 concludes. The Appendix contains the proofs of the propositions and results on the correlated cash flow model.

1. Some Skewness Facts

This section starts by documenting several well-known facts about firm-level and aggregate return skewness. Figure 1 plots the time series of the mean firm stock return skewness and of skewness in the equally weighted market return computed using six months of daily data. The return is the holding period arithmetic return from CRSP, inclusive of dividends. The data are further described in Section 5 below. Four salient stylized facts emerge from the
figure. First, firm-level skewness is always positive, except in the second half of 1987. Second, skewness in market returns is almost always negative, representing 77% of the observations. Third, and as a combination of the two facts above, most semesters of large negative skewness in market returns are not accompanied by negative skewness in firm-level returns. Fourth, firm skewness is higher than aggregate skewness in 96% of the semesters. Because skewness is generally lower and more often negative for larger firms, I reproduce the same statistics using value-weighted mean (or median) firm skewness and value-weighted market return skewness. Not surprisingly, the value-weighted mean (or median) of firm skewness is lower, but the general gist of the results above is unaffected. Results are also robust to using logarithmic returns and are available upon request.

Figure 1 here

To better understand these results and the need for cross-sectional heterogeneity in a model-free way, it is useful to write the expression for sample nonstandardized skewness for a market composed of \(N \) firms (i.e., the sample estimate of the third-centered moment of returns). Assuming equal weights for simplicity, let \(r_{pt} = N^{-1} \sum_{i=1}^{N} r_{it} \) be the time \(t \) market return, \(\bar{r}_i = T^{-1} \sum_{t=1}^{T} r_{it} \) be the mean sample return for firm \(i \), and \(\bar{r}_p = T^{-1} \sum_{t=1}^{T} r_{pt} \) be the mean sample market return. Then, sample nonstandardized skewness is:

\[
T^{-1} \sum_{t} (r_{pt} - \bar{r}_p)^3 = \frac{1}{N^3} \sum_{i=1}^{N} \frac{1}{T} \sum_{t} (r_{it} - \bar{r}_i)^3 + \frac{3}{TN^3} \sum_{t} \sum_{i=1}^{N} (r_{it} - \bar{r}_i) \sum_{i' \neq i}^{N} (r_{i't} - \bar{r}_{i'})^2 + \frac{6}{TN^3} \sum_{t} \sum_{i=1}^{N} (r_{it} - \bar{r}_i) \sum_{i' > i}^{N} \sum_{t' > t}^{N} (r_{i't'} - \bar{r}_{i'}) (r_{lt} - \bar{r}_l). \tag{1}
\]

The first term in (1) is the mean of firm skewness and, as Figure 1 shows, it is positive. The second and third terms in (1) are the co-skewness terms. I label these terms \textit{co-vol} and
co-cov, respectively. Together, they must be negative for skewness in market returns to be negative.

Loosely speaking, the co-skewness terms capture the average co-movement in one firm’s return with the variance of the portfolio that comprises the remaining firms. Thus, co-skewness depends on the cross-sectional heterogeneity of firm co-movement, implying that the negative skewness in aggregate returns is a cross-sectional phenomenon. Specifically, the co-vol term describes how one firm’s return co-moves with the return variance in the other firms in the portfolio. The co-cov term describes how one firm’s return behaves at times of greater or smaller co-movement in other stocks.

Next I show that the co-cov term dominates the sum in (1). The number of firms in a portfolio does not directly affect the calculation of sample skewness. Inspection of equation (1) reveals that N^{-3} multiplies every term. At the same time, N^{-3} also multiplies every term in the denominator of standardized skewness, because standardized skewness equals $T^{-1} \sum_t (r_{pt} - \bar{r}_p)^3 / [T^{-1} \sum_t (r_{pt} - \bar{r}_p)^2]^{3/2}$, cancelling off in the calculation of skewness. Where the number of firms matters is in the weights placed in the various terms. Observe that there are N firm-level skewness terms, $N(N - 1)$ terms in co-vol, and $N!/[3!(N - 3)!]$ terms in co-cov. Hence, as the number of firms increases, the number of terms associated with co-cov increases faster than the number of terms associated with any other component of skewness. This does not immediately imply that the co-cov terms dominate the sum, because it may be the case that their component terms cancel each other out.

In Figure 2, I plot the ratio of the standardized co-cov term to the sample skewness of market returns. With a ratio close to 100%, on average, the figure suggests that it is the co-cov term that drives negative skewness at the market level.

Figure 2 here
What determines the sign of the co-cov term is the presence of conditional asymmetries in stock correlations. Take a market downturn characterized by the average firm experiencing a return below the mean. If the pairwise correlations of $r_{lt} - \bar{r}_l$ and $r_{pt} - \bar{r}_p$ for all l are higher in downturns, then the typical term in co-cov, $(r_{it} - \bar{r}_i) (r_{it} - \bar{r}_i) (r_{lt} - \bar{r}_l)$, not only is negative in downturns but is larger in absolute value relative to market upturns, implying negative co-skewness. Hence, negative aggregate co-skewness is consistent with the evidence of higher stock correlations in downturns in Longin and Solnik (2001) and Ang and Chen (2002).

Finally, note that standardizing the third-centered moment introduces a discrepancy between mean firm skewness and the component of market skewness related to firm skewness. When standardized skewness is used, the term corresponding to the first term in (1) becomes the volatility-weighted average of standardized firm skewness (with weights $\omega_i = [\sum_t (r_{it} - \bar{r}_i)^2 / \sum_t (r_{it} - \bar{r}_i)^2]^{3/2}$). Because small firms tend to be more volatile and also have returns with more positive skew, this term is also positive, and negative skewness can arise only from negative co-vol and co-cov terms.

2. The Model

I construct a simple model that captures the observed changes in volatility and mean returns around dividend announcement events. I use the model to show that these patterns in the conditional mean and volatility of returns lead to positive skewness in firm-level returns. In Section 3, I study a model of incomplete information with earnings announcement events that shares similar properties of returns.
2.1 Investment opportunities

Time is discrete and indexed by $t = 1, 2, \ldots$. There is a risk-free asset with perfectly elastic supply that earns the gross rate of return of $R > 1$. For now, consider a stock market with one stock only that has a fixed supply of one share. The general case is treated in Section 4. The share of the stock is infinitely divisible and trades competitively at time t at the ex dividend price P_t. A dividend is announced (and simultaneously paid) every $K + 1$ periods,

$$D_t = F_t + \sum_{j=0}^{K} \varepsilon_{t-K+j}^D. \quad (2)$$

If t corresponds to a non-dividend period, then $D_t = 0$.

To keep track of the time to the next dividend announcement, trading periods are further identified by event time using the index $k = 0, \ldots, K$, where $k = 0$ refers to a dividend-paying period, and $k > 0$ refers to a non-dividend-paying period. It helps to think of a trading period as one week and of $K + 1$ periods as one quarter: Week k in the quarter is k weeks since the last dividend payment and $K + 1 - k$ weeks to the next dividend payment.

The dividend can be decomposed into a persistent component,

$$F_t = \rho_F F_{t-1} + \varepsilon_t^F, \quad 0 \leq \rho_F \leq 1,$$

with $\varepsilon_t^F \sim N(0, \sigma_F^2)$, and a transitory component, $\sum_{j=0}^{K} \varepsilon_{t-K+j}^D$, with $\varepsilon_t^D \sim N(0, \sigma_D^2)$. Note that dividend shocks are conditionally homoscedastic, and thus any conditional heteroscedasticity in equilibrium returns is generated endogenously.

Denote by P_t^k and Q_t^k the stock price and return, respectively, that occur in period t, k periods after the last dividend payout. The excess return in a dividend-paying period is

$$Q_t^0 \equiv P_t^0 + D_t - R P_{t-1}^K,$$
and in a non-dividend-paying period is

\[Q_t^k \equiv P_t^k - R P_{t-1}^{k-1}. \]

2.2 Investors’ problem

There is a continuum of identical investors with unit mass. Investors choose their time \(t \) asset allocation, \(\theta_t \), to maximize expected utility over next-period wealth, \(W_{t+1} \),

\[E \left[-\exp^{-\gamma W_{t+1}} |\mathcal{I}_t \right], \tag{3} \]

where \(\gamma > 0 \) is the coefficient of absolute risk aversion. The maximization is subject to the budget constraint,

\[W_{t+1} = Q_{t+1}^{k+1} \theta_t + RW_t, \tag{4} \]

and the information set,

\[\mathcal{I}_t = \{ P_{t-s}, D_{t-s}, F_{t-s}, \epsilon_{t-s}^D \}_{s \geq 0}. \tag{5} \]

For simplicity, I adopt the shorthand notation for the expectations operator, \(E_t[.] = E[.|\mathcal{I}_t] \).

2.3 Stock market equilibrium

Investors trade competitively in the stock market, making their asset allocation while taking prices as given. In equilibrium, the stock price is consistent with market clearing:

\[\theta_t = 1. \tag{6} \]

In the Appendix, I show that:
Proposition 1 The equilibrium price function is

\[P^k_t = p^k + \Gamma_k F_t + R^{-(K+1-k)} \sum_{j=0}^{k-1} \varepsilon^D_{t-j}, \]

(7)

for \(\Gamma_k = \frac{(\rho_F / R)^{K+1-k}}{1-(\rho_F / R)^{K+1}} \) and any \(k = 0, \ldots, K \). The constants \(p^k < 0 \) are given by

\[p^k = -\frac{1}{R^{K+1} - 1} \sum_{j=0}^{K} R^{K-j} E_t \left[Q_{t+1}^{k+1+j} \right], \]

(8)

where for any \(k \), \(E_t \left[Q_{t+1}^{k+1+K} \right] = E_t \left[Q_{t+1}^{k} \right]. \)

The expression in equation (7) uses the convention that \(\sum_{j=0}^{k-1} \varepsilon^D_{t-j} = 0 \). The stock price at \(k \) reflects the present value of dividends conditional on all available information. The present value accounts for the fact that at time \(t \)–after \(k \) periods have elapsed since the last dividend payment– it will take another \(K + 1 - k \) periods until dividends are paid again. Consider first the coefficient associated with \(F_t \). With \(k = 0 \), the coefficient is \(\left[(R/\rho_F)^{K+1} - 1 \right]^{-1} \), and the stock resembles a perpetuity discounted at rate \((R/\rho_F)^{K+1} - 1 \). This is because the next payment arises in \(K + 1 \) periods and is discounted by \(R^{K+1} \), and by that time \(F_t \) will have decreased in expectation by \(\rho_F^{K+1} \). \(K + 1 \) periods later, another payment occurs, which is also discounted at the same rate, and so on.

The transitory shock \(\varepsilon^D \) enters the stock price function because investors learn about it before it is paid as a dividend: \(\varepsilon^D_t \) enters the price function at time \(t \) with a coefficient of \(R^{-(K-k)} \), whereas \(\varepsilon^D_{t+1} \) enters the price function at time \(t+1 \) with a coefficient of \(R^{-(K-k-1)} > R^{-(K-k)} \). Despite being transitory, \(\varepsilon^D_t \) has de facto persistence of one until the next dividend payment, and persistence of zero thereafter.
2.4 Conditional distribution of stock returns

Define the conditional mean return as $\mu_k = E_t \left[Q_{t+1}^{k+1} \right]$ and the conditional volatility of returns as $\sigma_k^2 = E_t \left[Q_{t+1}^{k+1} - E_t \left(Q_{t+1}^{k+1} \right) \right]^2$. The investors’ first-order condition together with the stock market clearing condition requires that

$$\mu_k = \gamma \sigma_k^2. \quad (9)$$

To solve for the equilibrium values of $\{\mu_k, \sigma_k^2\}$, use the price function above to express excess returns as

$$Q_t^k = p^k - R p^{k-1} + \Gamma_k e_F^t + R^{-(K+1-k)} e_D^t, \quad (10)$$

for any k. In this expression, Q_0^0 is recovered by replacing k with $K + 1$ and noting that $p^{K+1} = p^0$ and $Q_{t+1}^{K+1} = Q_{t}^0$. Therefore,

Corollary 1 The conditional distribution of stock returns is normal,

$$Q_{t+1}^{k+1} | t \sim N \left(\mu_k, \sigma_k^2 \right),$$

with μ_k given by equation (9) and σ_k^2 given by

$$\sigma_k^2 = \Gamma_k^2 \sigma_F^2 + R^{-2(K+1-k)} \sigma_D^2. \quad (11)$$

The conditional mean and volatility of the stock return increase monotonically and are convex in k, all else equal.

The corollary states that the conditional stock return volatility increases with k despite the fact that the cash flow shocks e_F^t and e_D^t are conditionally homoscedastic. The intuition is that cash flow news that occurs farther away from the dividend payment is more highly
discounted and contributes less to risk than cash flow news that occurs closer to the dividend payment. Further, discounting penalizes news asymmetrically (i.e., conditional mean and volatility of stock returns are convex in k), which yields distributions of conditional mean returns and conditional volatility of returns that are positively skewed.

Quantitatively, the effect of discounting on conditional heteroscedasticity via the persistent shocks can be very large even for small interest rates. Consider the impact of k on the coefficient associated with σ_F^2 in equation (11). Specifically, evaluate the difference in coefficients at $k = 0$ and $k = K$ and take the limit as $\rho_F/R \to 1$. Applying L’Hôpital’s rule,

$$\lim_{\rho_F/R \to 1} \frac{(\rho_F/R)^2 \left(1 - (\rho_F/R)^{2K}\right)}{\left(1 - (\rho_F/R)^{K+1}\right)^2} = +\infty.$$

Intuitively, a lower interest rate (and higher persistence ρ_F) reduces the impact of discounting associated with cash flow news that is released before the next payout, but increases the value of the perpetuity associated with the news. The second effect is stronger than the first producing the result. Because transitory shocks lack the second effect, when $R \to 1$ the discounting effect through transitory shocks disappears.

The result in the Corollary shows that the model is consistent with the evidence that dividend announcements are associated with both higher mean returns and higher volatility (e.g., Aharony and Swary 1980; Kalay and Loewenstein 1985). More recently, Amihud and Li (2006) show evidence of a declining, but still significant, dividend announcement effect.

2.5 Unconditional distribution of stock returns

Corollary 1 shows that the firm’s stock return is conditionally normally distributed with mean μ_k and variance σ_k^2. The unconditional distribution of the firm’s stock return is not normal because the mean and variance of a randomly drawn return observation depend on k. In fact, because a k-period stock return is drawn from a normal density $\phi \left(Q; \mu_k, \sigma_k^2\right)$ and such
observations occur with frequency \(1/(K+1)\), the unconditional distribution of returns is a mixture of normals distribution. Formally,

Proposition 2 For \(K \geq 1\), the unconditional distribution of stock returns is a mixture of normals distribution with density

\[
f(Q) = \frac{1}{K+1} \sum_{k=0}^{K} \phi(Q; \mu_k, \sigma_k^2),
\]

where \(\phi(.)\) is the normal density function. For \(K = 0\), returns are unconditionally normally distributed.

The periodicity of dividends –by generating time-varying conditional volatility in stock returns– leads to the derived mixture of normals distribution for stock returns for \(K \geq 1\). This result provides a theoretical justification for attempting to fit a mixture of normals distribution to stock returns (e.g., Fama 1965; Granger and Orr 1972; Kon 1984; Tucker 1992).

In the Appendix, I prove the following corollary.

Corollary 2 The unconditional mean and variance of stock returns are

\[
E(Q_{t+1}) = \frac{1}{K+1} \sum_{k=0}^{K} \mu_k,
\]

\[
\text{Var}(Q_{t+1}) = \frac{1}{K+1} \sum_{k=0}^{K} \left[\sigma_k^2 + (\mu_k - E(Q_{t+1}))^2 \right].
\]

The unconditional (nonstandardized) skewness in stock returns is

\[
E\left[(Q - E(Q_{t+1}))^3\right] = \frac{1}{K+1} \sum_{k=0}^{K} (\mu_k - E(Q_{t+1}))^3 + \frac{3}{(K+1)^2} \sum_{k=0}^{K} \sum_{j<k} (\sigma_k^2 - \sigma_j^2) (\mu_k - \mu_j).
\]

(13)
The unconditional mean return is simply the mean of the k-conditional expected returns. The unconditional mean variance is the mean of the k-conditional variances plus the variance of the k-conditional means.

Skewness in stock returns can be decomposed into two terms. The first term in (13) is the level of skewness in expected returns, μ_k. For $K \leq 3$, it is possible to show that this term is non-negative because of the monotonicity and convexity of μ_k. For larger values of K, it is not possible to sign this term, but numerically it is always found to be positive. Intuitively, this term is positive because an increasing and convex μ_k in event time produces a spike-like pattern in expected returns in event time. The second term describes the impact on skewness of the co-movement between return volatility and expected returns. The risk-return tradeoff implied by equation (9) guarantees that the second term in (13) is positive: Periods of high expected returns are associated with periods of high volatility. In summary, stock returns display positive skewness.

2.6 Discussion

The stochastic discount factor implicit in the single firm equilibrium formulated above is 3

$$m_{t+1}^{k+1} = \gamma \exp \left[-\gamma \mu_{k+1} - \gamma \Gamma_{k+1} \varepsilon_{t+1}^F - \gamma R^{-(K+1-k)} \varepsilon_{t+1}^D \right].$$

It can be derived directly from the first-order conditions if written as $E_t \left[m_{t+1}^{k+1} Q_{t+1}^{k+1} \right] = 0$, and imposing the market clearing condition, $\theta_t = 1$. The stochastic discount factor changes with both calendar time as well as event time, reflecting the fact that shocks to dividends carry a higher risk premium the closer they are to a payout period. Formulating the problem as partial equilibrium and assuming an exogenous stochastic discount factor, as opposed to specifying preferences and budget constraints, is less restrictive and offers a simple and general approach to modeling the effects described in this paper, but lacks microfoundations.
This paper provides a microfoundation for event-time variation in the stochastic discount factor.

The model generates skewness in firm-level stock returns by making use of the time-series patterns in volatility that arise from having cash payouts spread out over time. While these patterns in conditional volatility are consistent with the evidence, there could be other explanations for the same facts. For example, it could be the case that the resolution of uncertainty afforded by earnings announcements also results in greater volatility and higher expected returns. I explore this idea in the next section by modeling earnings announcements.

The model takes the cash payout dates as fully predictable, which eliminates considerations about strategic timing of events and timing-related risk. While this assumption is made for tractability it finds some support in the data (Kalay and Loewenstein 1985). Likewise, earnings announcements days—to be discussed next—are generally predictable (e.g., Givoly and Palmon 1982; Chambers and Penman 1984; Kross and Schroeder 1984), and this predictability arises mostly from past earnings announcement behavior, which has been attributed to tradition (e.g., Givoly and Palmon 1982).

Positive skewness arises despite the fact that prices and returns are conditionally normally distributed. The source of skewness in the model is thus distinct from that which affects arithmetic returns mechanically due to truncation at zero. This benefit, due to exponential utility and normal shocks, comes at the cost of having negative prices with positive probability. To minimize this probability, it is customary to add a positive long-run mean dividend to the process in equation (2). Because all main results (i.e., patterns in conditional volatility and expected returns in event time) are unchanged, I have assumed away this constant for simplicity of presentation. Nevertheless, one can never rule out the possibility of negative prices in this setting, which is why the model should be understood as an approximation to reality. Another cost of the present setup is that it describes properties of dollar returns. To characterize the properties of simple, percent returns, and for comparability with
the empirical analysis, I resort to numerical simulations of a model that allows for a mean dividend. The results in this paper appear robust to these considerations as well (available upon request).

3. A Model with Earnings Announcements

I now construct a model of earnings announcement events and show that it predicts the same return and volatility properties found for dividend announcement events.

Building on the model above, I allow for an intermediate earnings announcement event at event date $1 < K_a < K$. For the earnings announcement to be informative, I introduce incomplete information in the model. To do this with minimal deviation from the existing model, I assume that for any $1 \leq k \leq K_a - 1$, investors learn

$$
S^F_t = \varepsilon^F_t + \varepsilon^{SF}_t,
$$

$$
S^D_t = \varepsilon^D_t + \varepsilon^{SD}_t,
$$

with the information noise $\varepsilon^{SF}_t \sim N(0, \sigma^2_{SF})$ and $\varepsilon^{SD}_t \sim N(0, \sigma^2_{SD})$ independent of each other and of all other shocks. It is assumed that the earnings announcement at event date K_a reveals all current and past shocks. Also, for simplicity, shocks are known with certainty after K_a. This gives rise to the following information structure. Let t be any trading period and k be the corresponding date in event time. For any $k = 0$ or $k > K_a - 1$,

$$
\mathcal{T}^k_{t+k} = \{P_{t+k-s}, D_{t+k-s}, F_{t+k-s}, \varepsilon^D_{t+k-s}\}_{s \geq 0},
$$

and for any $1 \leq k \leq K_a - 1$,

$$
\mathcal{T}^k_{t+k} = \{P_{t+k-s}, S^F_{t+k-s}, S^D_{t+k-s}, \mathcal{I}_t\}_{s = 0, \ldots, k-1}.
$$
The Appendix shows the following proposition:

Proposition 3 The equilibrium price function is

\[P^k_t = p^k + \Gamma_k E_t (F_t) + R^{-(K+1-k)} \sum_{j=0}^{k-1} E_t (\varepsilon^D_{t-j}) , \]

for any \(k = 0, \ldots, K \).

The stock price function takes the same form as before with the actual values of the random variables replaced by their conditional expectations. After \(K_a \), the expectations operators drop out because the shocks are in the investors’ information set. With the equilibrium prices, it is possible to derive the equilibrium stock return. For any period \(1 \leq k \leq K_a - 1 \),

\[Q^k_t = p^k - R p^{k-1} + \Gamma_k E_t (\varepsilon^F_t) + R^{-(K+1-k)} E_t (\varepsilon^D_t) . \]

When the signals that investors get are infinitely precise and \(\sigma_{SD}^2 = \sigma_{SF}^2 = 0 \), equation (10) is recovered. For \(k = K_a \),

\[Q^k_t = p^k - R p^{k-1} + \Gamma_k \varepsilon^F_t + R^{-(K+1-k)} \varepsilon^D_t \]

\[+ \varepsilon^F_t \Gamma_k \left[F_{t-1} - E_{t-1} (F_{t-1}) \right] + R^{-(K+1-k)} \sum_{j=0}^{k-2} \left[\varepsilon^D_{t-1-j} - E_{t-1} (\varepsilon^D_{t-1-j}) \right] . \]

The resolution of uncertainty with the earnings announcement implies that the stock return at \(K_a \) responds to the unanticipated realizations of the past shocks. Finally, for \(k > K_a \), returns take the same form with the same conditional moments as before.

To conclude the derivation of the equilibrium, use the return process above to get the conditional stock return variance, and equation (9) to obtain the conditional mean stock
It is straightforward to show that for any period \(1 \leq k \leq K_a - 1\),

\[
Var_{t-1}(Q^k_t) = \Gamma_k^2 \sigma_F^4 + R^{-2(k+1-k)} \frac{\sigma_D^4}{\sigma_D^2 + \sigma_{SF}^2},
\]

and for period \(k = K_a\),

\[
Var_{t-1}(Q^k_t) = \Gamma_k^2 \sigma_F^2 + R^{-2(k+1-k)} \sigma_D^2
\]

\[
+ \Gamma_k^2 \rho_F^2 Var_{t-1}(F_{t-1}) + R^{-2(k+1-k)} \sum_{j=0}^{k-2} Var_{t-1}(\varepsilon^D_{t-1-j}).
\]

The process for the conditional variance of firm returns is increasing and convex up to \(K_a\). At \(K_a\), the conditional variance may drop so that \(Var_{t-1}(Q^{K_a}_t) > Var_{t}(Q^{K_a+1}_{t+1})\). This case arises for sufficiently low precision of the signals prior to the earnings announcement, which generates significant resolution of uncertainty at \(K_a\). This pattern resembles that of the nonstationary event model of He and Wang (1995).

The patterns in conditional volatility and mean returns described here are consistent with the evidence in Beaver (1968), Givoly and Palmon (1982), Ball and Kothari (1991), Dubinsky and Johannes (2004), and Frazzini and Lamont (2006). Studying a more recent sample, Cohen et al. (2007) report persistent, significant earnings announcement premia, albeit a smaller one in the later part of the sample. They associate the more recent lower premia with increased voluntary disclosures, which is also consistent with the model above.

In summary, it is possible to have the conditional return variance, and thus also the conditional mean return, displaying two distinct spikes in the event time from 0 to \(K\) (one for the earnings announcement and another for the cash payout). By making the periods of high conditional mean returns more likely, returns become less positively skewed. By itself this feature cannot generate negative skewness in aggregate returns, but may contribute to more negative skewness in market returns relative to the benchmark model. Overall, the
results with the earnings announcement model are qualitatively similar to those in the model with dividend announcements.

4. Skewness in Aggregate Stock Returns

I consider stock markets composed of firms with i.i.d. cash flow shocks that differ only with respect to the timing of their event dates. Together with the assumptions of negative exponential utility and normal shocks, the assumption of i.i.d. cash flows guarantees that stock returns are independent and that the equilibrium firm returns share the properties of the equilibrium returns in the single-stock case studied above. While the independence of stock returns is an unrealistic result, it is useful for two reasons. First, it isolates the effect of cross-sectional heterogeneity in event dates on aggregate skewness: Trivially, with uncorrelated returns, market skewness can arise only from the cross-sectional heterogeneity in event dates. Second, it gives rise to a simpler presentation with less notation. The main drawback of the independence assumption is that returns are deterministic as the number of firms goes to infinity, so the results below rely on a finite number of firms. In the Appendix, I show that the results follow through in the general case of correlated cash flows, where the assumption of finite number of firms is not needed, and discuss implications for systematic risk.

I start by presenting the unconditional distribution of aggregate stock returns and computing skewness in aggregate returns.

4.1 The unconditional distribution of aggregate returns

Let the stock market be composed of N firms. The stock market dollar return is the return from buying and selling the stock on all N firms. Because each firm has one share, the purchase price of all firms is $\sum_{i=1}^{N} P_{it-1}$ and the sale price plus the dividend is $\sum_{i=1}^{N} (P_{it} + D_{it})$.

22
Thus, the per-share dollar excess return is \(Q_{Mt} = \frac{1}{N} (Q_1 + \ldots + Q_N_t) \). The unconditional distribution of the stock market return is therefore a mixture of normals distribution:

\[
f(Q_M^k) = \frac{1}{K+1} \sum_{k=0}^{K} \phi(Q_M^k; \mu_k^M, \sigma_{M,k}^2).
\]

Cross-sectional heterogeneity is introduced in the following way. Each firm makes a dividend announcement at equidistant periods and with equal frequency. Firms are assumed to differ at most by \(K \) periods in their announcements, which limits the amount of heterogeneity with respect to announcement dates to \(K + 1 \) possible dates. A firm of type \(k = 0, 1, \ldots, K \) is identified in the following manner. I arbitrarily assign firm-type 0 to a group of firms announcing in the same period. All other firm types are identified using the distance of their announcement date to that of firms of type 0. Therefore, a firm’s type is set vis-à-vis firm-type 0’s event time. To track the entire cross section of firms it is thus enough to track event time for one type of firm. I arbitrarily assign the index \(k \) in \(Q_M^k \) to track event time for firm-type 0.

The Appendix shows that (nonstandardized) skewness in aggregate stock returns is

\[
E \left[(Q_{Mt} - E(Q_{Mt}))^3 \right] = \frac{1}{N^3} \sum_{i=1}^{N} E \left[(Q_{it} - E(Q_i))^3 \right]
+ \frac{3}{K+1} \frac{1}{N^3} \sum_{k=0}^{K} \sum_{i=1}^{N} (\mu_k^i - E(Q)) \sum_{i' \neq i}^{N} \sigma_{k,i,i'}^2 + \left(\mu_{k}^{i'} - E(Q) \right)^2
+ \frac{6}{K+1} \frac{1}{N^3} \sum_{k=0}^{K} \sum_{i=1}^{N} (\mu_k^i - E(Q)) \sum_{i' > i}^{N} \sum_{l > i'}^{N} \left(\mu_{k}^{i'} - E(Q) \right) \left(\mu_{k}^{l} - E(Q) \right).
\]

Skewness in aggregate stock returns is the sum of average firm skewness (first term on the right-hand side of equation (15)) and the co-skewness terms (remaining two terms). The first of the co-skewness terms describes the co-movement of one firm’s stock with other firms’ volatility and is the theoretical equivalent to the \(co-vol \) term. The second co-skewness term
describes the co-movement of one firm’s stock with the covariance between any two other firms and is equivalent to the co-cov term. Note that it requires \(N \geq 3 \) in the stock market to be non-zero.

Because firm-level skewness is positive in this model, negative aggregate skewness must come from the co-skewness terms: Negative stock market skewness becomes a cross-sectional phenomenon. The portfolio return becomes negatively skewed when a low return for one firm is associated with high volatility in the remaining firms in the portfolio. One way in which this is achieved is via conditional asymmetric correlations. If stock return correlations increase in market downturns, then the co-cov term is negative. Indeed, I show below that the model can generate negative co-skewness and that its main cause is the presence of conditional asymmetric correlations.

4.2 Skewness and cross-sectional heterogeneity in announcement events

To evaluate the effect of cross-sectional heterogeneity in event dates on co-skewness, I conduct two numerical experiments that simulate a variety of stock market configurations. In all experiments and for simplicity, I assume one firm per firm type. I use dollar returns because the model provides closed-form solutions for all relevant moments, but model simulations show that the results hold for simple, percent returns as well. Figure 3 presents the results. Panels A through D illustrate variants of the model in Section 2, and panels E and F illustrate the model in Section 3. For each stock market configuration, I plot mean firm skewness (dashed line) and market skewness (solid line). For comparability with the empirical analysis, skewness is the third centered moment of returns normalized by the standard deviation cubed.

Figure 3 here

In the first experiment, reported in the left panels A, C, and E, each stock market is composed of two types of firms with cash payouts separated by \(k \) periods, where \(k \in \{0, 1, \ldots, K\} \).
By varying k, the two firms start off similar, become increasingly dissimilar, and end up similar again. I choose $K = 12$ so that each trading period represents one week and the time from 0 to K corresponds to one calendar quarter. Because $N = 2$, this experiment explores the effect of cross-sectional heterogeneity ignoring the $co-cov$ term.

In the second experiment, reported in the right panels B, D, and F, I allow a role for the $co-cov$ term by having the number of firms in the stock market grow as heterogeneity across firms also changes. Each stock market is indexed by k, meaning it consists of $k + 1$ firm types with cash payout dates at periods $0, 1, \ldots$, and k. The period from 0 to k thus denotes an announcement season during the window of time $0, \ldots, K$.

In panel A, mean firm skewness is constant because with i.i.d. cash flows firm skewness does not depend on a firm’s payout date. Market skewness is symmetric because having the second firm pay out k periods after the first firm or k periods before the first firm results in identical cross-sectional heterogeneity. Co-skewness can be very large and negative but never sufficiently so in order to offset the individual skewness terms. Co-skewness is particularly negative when the two firms pay out at dates that are farthest apart because then the high volatility of the announcing firm contrasts the most with the contemporaneously low expected return of the non-announcing firm. In summary, the experiment suggests that the $co-vol$ terms can significantly reduce market skewness relative to firm-level skewness, but cannot generate negative market skewness. This result is confirmed with many other parameterizations.

In panel B, mean firm skewness is also constant because each firm’s skewness does not depend on the payout date. Market skewness displays a flipped J-curve with respect to k. For $k = 0$ there is only one firm type in the stock market, and mean firm and market skewness are identical. For $k = 1$, the stock market has two firm types, one with a cash payout at 0 and the other at 1. This case is also present in panel A of the figure. For $k > 1$ skewness drops faster than it did in panel A because of a negative $co-cov$ term. As more firm types
are added and the range of cash payout dates is widened, market skewness becomes negative. The negative market skewness occurs despite the fact that mean firm skewness is positive. Market skewness remains negative until the stock market consists of one firm of each type. When the stock market consists of one firm of each type, skewness is zero because every period looks the same with equal aggregate stock market conditional mean and volatility of returns.

The result that skewness is zero when the stock market is composed of an equal number of firms announcing in each period is an artifact of the absence of other forms of heterogeneity across firms. Assume, as way of an example, that firms with cash payouts at \(k = 11, 12 \) have lower volatility of cash flow shocks. The model results are depicted in panels C and D of Figure 3. The differences to panels A and B are in the last two stock market configurations of each panel, which contain one or both of these firm types. Lowering \(\sigma_D^2 \) and \(\sigma_F^2 \) implies lower announcement excess returns in the context of the model in Section 2.4 The symmetry that exists in panel A is not perfect in panel C, but is still present. As for panel D, note that the lower volatility associated with firms announcing at \(k = 11, 12 \) and their associated lower expected returns contribute to keeping skewness down and negative even when all firm types are present in the market.

Finally, consider panels E and F. In general, adding earnings announcement events produces similar observations to those of the cash payout model in panels A and B. The plot in Panel E shows a symmetric pattern for skewness, which as before results from the symmetry of event dates, and the plot in panel F shows a generally declining market skewness as \(k \) increases. As expected, panels E and F show that firm-level skewness is lower in the presence of the additional event. This has implications for market skewness: With incomplete information, the numerical example shows that it is enough to have seven different types of firms in order to generate negative market skewness, whereas in the complete information model of panels A and B, the same parameters require eight different firm types. From now on, I
focus attention on the simpler model of cash payouts and complete information.

The possibility that the \textit{co-cov} term is responsible for the negative skewness in the stock market is investigated further in Figure 4. This figure plots market skewness (solid line) in each of the stock market configurations in panel B of Figure 3, as well as the respective \textit{co-cov} term (dashed line) also standardized by market volatility. A common property of the numerical examples studied, and of this one in particular, is that the \textit{co-cov} term is the main driver of negative skewness in the stock market despite the small number of firms, consistent with evidence presented in Figure 2. The symmetry of events in the model implies that as k approaches K and market skewness goes to zero, the \textit{co-cov} term turns positive and the \textit{co-vol} terms turn negative. The \textit{co-vol} terms are negative for large k because almost every period t consists of an event period with one firm with the highest conditional volatility (the one with an event at $t + 1$) and all the others with low volatility possibly below their respective unconditional means.

Figure 4 here

A negative \textit{co-cov} term arises from asymmetric stock correlations in market upturns versus market downturns. To show this, I follow Longin and Solnik (2001) and Ang and Chen (2002), and compute exceedance correlations defined as the correlation between a firm’s stock return and the market return in market upturns (i.e., market return above its unconditional mean) and the correlation between a firm’s stock return and the market return in market downturns (i.e., market return below its unconditional mean). Figure 5 depicts the model simulated average pairwise exceedance correlation in market upturns (solid line), and the ratio of the average pairwise correlation in downturns to that in upturns (dashed line) across the various stock market configurations described in panel B of Figure 3. The figure shows two main properties. First, stock markets with more firm types have lower exceedance correlations in
market upturns. Additional heterogeneity makes it more likely that firms have low returns while overall the market is high. Second, and more importantly, there is a strong conditional asymmetry in correlations. When the stock market is composed of firms announcing in periods $0, 1, ..., 7$, and market skewness is negative, the exceedance correlation in market downturns is roughly 60% higher than in market upturns. This prediction is consistent with the evidence in Ang and Chen (2002), who document higher correlations for U.S. stocks in market downturns.

Figure 5 here

It is also interesting to analyze which trading periods in the quarter contribute most toward overall skewness. Specifically, I am interested in the properties of skewness with respect to the timing of the announcement season. Figure 6 presents a decomposition of the negative skewness for the stock market consisting of eight firm types, each firm type with a cash payout at a different period k, with $k = 0, ..., 7$. The figure shows that most negative skewness occurs around the start of the event season when some firms’ volatility spikes vis-à-vis that of others.

Figure 6 here

In the numerical examples above, I assume that $K = 12$ so that there are always 13 periods between any two events for the same firm. While the choice is meant to identify each period as one week and each set of 13 periods as one quarter to match the regularity of the events studied, this choice is not innocuous. Taking $K = 0$ means that payouts occur at every period, and in the model returns become unconditionally normally distributed with zero skewness. More generally, K helps control the amount of firm heterogeneity in payout.
dates. Small values of K imply that there cannot be much heterogeneity and make it harder to generate negative aggregate skewness. For example, consider a stock market that consists of two firm types and $K = 2$. When one firm-type has a payout event, the other will either have one next period or the period after. Because of the regularity of the payout events, both configurations would imply the same level of market skewness. Because of the closeness of the announcements, market skewness would generally be positive.5

5. **Empirical Evidence**

I use daily return data on AMEX/NASDAQ/NYSE stocks from CRSP for the period between January 1, 1973 and December 31, 2009. I use the arithmetic holding period total return from CRSP, inclusive of dividends. I also obtain from CRSP dividend distribution information. I use variable DCLRDT to retrieve the date the board declares a distribution and variable DISTCD to select ordinary dividends and notation of issuance. Information about earnings announcement events is from the merged CRSP/Compustat quarterly file for the period January 1, 1973 through June 30, 2009 (variable RDQ). Below, skewness is estimated using six months of daily return data. Firms are required to have complete return data within each semester to be included in the sample.

5.1 **Cross-sectional heterogeneity in event dates**

I start by describing the cross-sectional dispersion in cash payout announcements and in earnings announcements. I am interested in the calendar week of the announcement within the quarter. Figure 7 plots the histograms of the announcement week for cash payouts (Panel A) and of the announcement week for earnings announcements (Panel B).6 Cash payouts are close to uniformly distributed across the quarter. In contrast, and consistent with other studies (e.g., Chambers and Penman 1984; Kross and Schroeder 1984), earnings announcements
occur in seasons, being concentrated between weeks two and eight in the calendar quarter and leaving the other half of the quarter with less than 20% of the announcements. These patterns are consistent across various subsamples and also across the various calendar quarters. The evidence suggests that cross-sectional dispersion in payout dates may not be able to explain the negative skewness in aggregate returns, but that cross-sectional dispersion in earnings announcement events may explain the negative skewness in aggregate returns. The reason is that when events are uniformly distributed in the quarter, the model predicts zero unconditional skewness (unless additional firm heterogeneity is assumed as shown in panels C and D of Figure 3). At the other extreme, when events are concentrated in one week in the quarter, the model predicts positive skewness in aggregate returns because of the clustering in volatility in the same week for all firms. In addition, many firms do not pay dividends, which results in a much smaller sample relative to the earnings announcement sample with a consequent decrease in the precision of estimates. I therefore use data on earnings announcements below.

Figure 7 here

Next, I reproduce empirically the experiments that give rise to Figure 3. For every semester, I group firms by week of first earnings announcement in the semester. This gives rise to 13 portfolios, labeled P_1 through P_{13}, one for each of the weeks in the first quarter of the semester. The portfolios vary greatly in the number of firms because of the concentration of earnings announcement events during the quarter (see Figure 7). To keep a constant number of firms across portfolios, I randomly drop firms from portfolios to match the number of firms in the smallest portfolio. It is not possible to replicate in the data the absolute symmetry that exists in the model because firms do not consistently announce in the same week in every quarter. Forcing firms in portfolio P_k to contain only firms that announce in week k
in both quarters in the semester would lead to a significant loss of observations. I consider two samples: (i) the full sample since 1973, and (ii) the subsample with data from January 1, 1988, because the earlier years in the full sample have fewer firms. The results below have been replicated when performed over a quarter of data.

Figure 8 replicates experiment one above (left panels in Figure 3), and Figure 9 replicates experiment two (right panels in Figure 3). Figure 8 plots the sample skewness in the equally weighted portfolio return for the portfolios consisting of the firms in P_1 and P_k against the index $k = 1, 2, ..., 13$. I also plot the corresponding 10% confidence bands constructed using the sample standard deviation of the estimated skewness measures. The figure shows that portfolio return skewness displays a U-shaped pattern in both samples, consistent with the symmetric U-shaped pattern in the model.

Figure 8 here

Figure 9 plots the sample skewness in the equally weighted portfolio return for the portfolios that result from the unions $P_1 U P_2 U ... U P_k$ against the index $k = 1, 2, ..., 13$, and the corresponding 10% confidence bands. In both sample periods, there is a negative relationship between skewness and the increased heterogeneity that results from adding dispersion in earnings announcement dates into the portfolio. This evidence is also consistent with the model prediction.

Figure 9 here

An alternative interpretation of the results in Figure 9 is that investors with a preference for positive skewness prefer to remain underdiversified (see Simkowitz and Beedles 1978; Conine and Tamarkin 1981). Using a large dataset of individual investor accounts, Mitton and
Vorkink (2007) find that less-diversified investor portfolios tend to be more positively skewed because they are composed of firms with more positively skewed stock returns. While this alternative interpretation is plausible, it does not apply to the announcement-week portfolios constructed here. Figure 10 shows that the larger (and more diversified) portfolios in Figure 9 have approximately the same mean firm skewness as the smaller portfolios. This alternative interpretation is also not consistent with the evidence I present next.

Lastly, I present evidence of how the earnings announcement season is related to skewness. I decompose market skewness computed using six months of data into its weekly components. The decomposition guarantees that adding up the weekly components yields the market skewness for the six-month period. Recalling Panel B of Figure 7, an earnings announcement season starts shortly after the beginning of every quarter. Figure 11 shows that an earnings announcement season is also when skewness has its most negative components during the quarter, consistent with the model prediction illustrated in Figure 6.

There are two main caveats regarding the evidence presented and the model predictions. First, in Figure 9, skewness strictly declines with \(k \), whereas in the model, when all firm types are allowed, skewness becomes zero. This property of the model is the result of: (i) limiting heterogeneity across firms to the event date (see panel D of Figure 3), and (ii) imposing that firms always announce in the same calendar week in every quarter, which is not validated in the data. Second, in both Figures 8 and 9, point estimates of portfolio return skewness are negative. One possible explanation for the negative portfolio skewness is that even the firms
in the same portfolio P_k differ in the week of earnings announcement in the second quarter of the semester. Another explanation is that the cross-sectional heterogeneity in events is not subsumed in the cross-sectional heterogeneity of earnings announcement events. Finally, it could be the case that firm returns are exposed to a common factor that is negatively skewed. I return to this last point in subsection 5.3.

5.2 The number of firms in a portfolio

Section 1 discusses how the number of firms in a portfolio affects the weights placed on each of the various terms that compose the skewness of a portfolio. There are two additional facts about how the number of firms in a portfolio, N, relates to skewness in the portfolio return. The first is that the co-skewness terms are important and negative even when portfolios are composed of a small number of firms. The second is that the co-skewness terms appear to be monotonically decreasing in N. To show these two facts, I construct equally weighted portfolios of size $N = 25$ and $N = 625$ in the following way. First, I assign a random number to each firm and rank firms accordingly. Second, non-overlapping portfolios are formed by taking each consecutive group of N firms according to their ranking. This procedure guarantees that if two firms are in the same portfolio for $N = 25$ they are also in the same portfolio for $N = 625$ – a property that is needed to capture the effect of increasing N. Finally, mean portfolio skewness is computed across the N-firm portfolios. The procedure is then repeated for every semester.

The upshot of the exercise is Figure 12 where I repeat the plots of mean firm skewness and market skewness from Figure 1. The figure shows that the co-skewness terms are important even for small N and that they appear to be monotonic in N. Using median skewness produces a similar observation. The observed monotonicity pattern can be fully attributed to monotonicity in co-skewness to N because the mean return skewness across portfolios is the same no matter how many firms are in a portfolio (provided the variance of the portfolio does
not change much). This evidence is consistent with the model, but is also consistent with the existence of a negatively skewed common factor in returns. If returns follow $r_{it} = \beta_i f_{it} + \varepsilon_{it}$ where f_{it} is the common factor, it can be shown that, as $N \to \infty$, nonstandardized sample skewness converges to $\bar{\beta}^3 T^{-1} \sum_i (f_{it} - \bar{f})^3$, where $\bar{\beta}$ is the average exposure to the common factor.

5.3 Negatively skewed factor in returns

Duffee (1995) proposes that the discrepancy in measured skewness in firm and market returns can be accounted for by the existence of a negatively skewed factor in returns. Duffee suggests looking at the market return as such a factor, but does not try to explain the negative skewness in the market return itself. While my model can explain the skewness in market returns from the cross-sectional heterogeneity in firm announcements, it is possible that market returns are negatively skewed due to other factors, such as jumps in the cash flow process. Separating these different hypotheses is important but difficult because the inclusion of factors, especially those driven by statistical validation, introduces the possibility of “throwing the baby out with the bath water”–of a false rejection of the paper’s null hypothesis. In fact, this is the limitation of the analysis in this subsection. By removing the market factor from firm returns it assumes that the skewness in the market factor is unrelated to the mechanism proposed in the paper.

I remove one common factor from returns for the following reasons. First, the Appendix shows that the model is a one-factor model. Second, the market factor may capture the effect of peso problems or jumps in (common factors in) cash flows that would arise in a more general model, whereas a second factor may capture the skewness induced by cross-sectional heterogeneity in firm events. Third, Engle and Mistry (2007) suggest that the ICAPM is
inconsistent with priced risk factors that do not display asymmetric volatility or for which
time aggregation changes the sign of skewness. In their paper, the market factor is negatively
skewed across all frequencies. The size and momentum factors are negatively skewed at
high frequencies but positively skewed at lower frequencies and the book-to-market factor is
positively skewed across all frequencies. The results in the subsample from 1988 are especially
interesting, because they coincide with the period of study in Engle and Mistry.

To remove the market factor, I run a regression of firm-level daily returns on market
returns,

\[q_{it} = a_i + b_{i1}q_{Mt} + b_{i2}q_{Mt-1} + b_{i3}q_{Mt-2} + \varepsilon_{it}, \]

over the largest possible sample period from 1963 to 2009 for each firm \(i \), from which I
obtain the estimated "idiosyncratic" returns, \(\hat{\varepsilon}_{it} \). I use logarithmic returns, \(q_{it} \) and \(q_{Mt} \),
as opposed to arithmetic returns and allow for two lags of the market return because of
microstructure effects such as nonsynchronous trading (Duffee 1995). The use of logarithmic
returns eliminates the positive skewness that arises mechanically because prices are bounded
below at zero (see Duffee 1995; Chen, Hong, and Stein 2001). However, the overall impact
on the level of skewness is unclear because removing the market factor acts in the opposite
direction to increase the level of skewness.

Having obtained the residuals \(\hat{\varepsilon}_{it} \), I proceed as in subsection 5.1, creating portfolios of
firms according to the calendar week of their first earnings announcement in each semester.
Again, I label these portfolios \(P1 \) through \(P13 \), one for each of the weeks in the first quarter
of the semester. I then repeat experiments one and two using the estimated residuals \(\hat{\varepsilon}_{it} \).

Figure 13 depicts skewness across the various portfolios for experiment one. Removal of
the market factor contributes to less negative portfolio skewness as compared with Figure
8. In the full sample, portfolio skewness is always insignificant though the point estimate
for \(P1 \) is positive. However, the symmetry present in Figure 8 is lost. In the subsample
with post-1988 data, not only is the skewness in $P1$ significantly positive, but there also is a more symmetric relation in the point estimates. It is possible that the greater number of firms listed in this subsample is contributing to the better results. Figure 14 depicts the results for experiment two. Again, compared with Figure 9, portfolio skewness is higher after the removal of the market factor. Consistent with the model there are now several positive point estimates for portfolio skewness and there also is a more pronounced flattening of the skewness curve as k increases.

Figures 13 and 14 here

5.4 Timing of announcements

Acharya et al. (forthcoming) propose a model of endogenous information releases where each firm has positively skewed returns, but the stock market may display negative conditional skewness when firms cluster their announcements around the release of bad economy-wide news. Despite the similarity of some of the predictions, the information events that Acharya et al. study are very different in nature from earnings announcement events modeled here. Theirs is a model of voluntary disclosures, which have a median occurrence of zero in a quarter (Bhojraj et al. 2010), whereas earnings announcements are mandatory.

To further distinguish the two hypotheses, I construct the distribution of earnings announcements conditioning on market movements. According to Acharya et al., bunching of earnings announcements is to be expected after market downturns, relative to market upturns. I take the monthly CRSP value-weighted return (including distributions) prior to every quarter and label market upturns as those quarters that follow a return above the median and market downturns as those quarters that follow a return below the median. I repeat the analysis using as cutoffs the 75th percentile and the 25th percentile, respectively. The results are robust to using monthly market returns and to using contemporaneous returns.
Conditional on the market return, I construct the transition matrix of earnings announcements by keeping track of when firms announced in the previous and current quarters. These transition matrices have no zero elements and thus have a unique stationary distribution (see Ljungqvist and Sargent 2000). The stationary conditional cumulative distributions are depicted in Figure 15. The distribution depicted using a dashed (solid) line conditions on market upturns (downturns). There is no apparent bunching after market downturns and, contrary to Acharya et al., a slightly larger fraction of firms tend to announce at the beginning of the quarter after market upturns.

Figure 15 here

6. Conclusion

The main contribution of this paper is to model and provide evidence on a new source of negative skewness in market returns. This source consists of the cross-sectional heterogeneity in the timing of earnings announcement events. The paper develops a simple model to capture the observed changes in volatility and mean returns around cash payout and earnings announcement events. The model shows that periodicity in these events gives rise to conditional heteroscedasticity and positive skewness in firm returns consistent with the data. The model also shows that heterogeneity in the timing of these events can lead to negative skewness in market returns despite the positive skewness in firm returns. The negative skewness in market returns in the model is further shown to be caused by stock correlations that are asymmetrically higher in market downturns. These model predictions are consistent with evidence based on the cross-sectional dispersion of earnings announcement events.

The results in this paper can be informative to the literature on rare disasters that tries to explain the equity premium puzzle and also predicts negative skewness in aggregate stock returns (e.g., Rietz 1988; Barro 2006). Like this paper, Chang, Christoffersen, and Jacobs
(2009) present evidence suggestive that aggregate skewness may not be due to jump risk. Future research should develop structural models nesting several hypotheses to better identify the sources of negative skewness in aggregate returns.

The results in this paper are also pertinent to the large literature that tries to model the dynamics of aggregate return volatility. The model predicts that aggregate return volatility is partly explained by the cross-sectional heterogeneity of firm-level volatility. Testing this prediction is left for future research.
Appendix A: Proofs

This appendix collects the proofs of the propositions in the text.

Proof of Proposition 1: Guess that equilibrium stock returns are conditionally normal with

\[Q_{t+1}^{k+1} \sim N (\mu_k, \sigma_k^2). \]

The representative investor solves (3) subject to equations (4) and (5). The problem yields the familiar first-order necessary and sufficient condition,

\[\theta_t = \frac{\mu_k}{\gamma \sigma_k^2}. \]

Imposing the market clearing condition that the representative investor holds all shares, \(\theta_t = 1 \), gives equation (9), \(\mu_k = \gamma \sigma_k^2 \). Using equation (9), and assuming without loss of generality that time \(t + 1 \) corresponds to a payout period, it is possible to write the following set of equilibrium conditions:

\[
\begin{align*}
P_t^K & = R^{-1} \left[-\gamma \sigma_k^2 + E_t \left[P_{t+1}^0 + D_{t+1} \right] \right] \\
P_{t-1}^{K-1} & = R^{-1} \left[-\gamma \sigma_{K-1}^2 + E_{t-1} \left[P_t^K \right] \right] \\
& \vdots \\
P_{t-K}^0 & = R^{-1} \left[-\gamma \sigma_K^2 + E_{t-K} \left[P_{t-K+1}^1 \right] \right] \\
P_{t-K-1}^K & = R^{-1} \left[-\gamma \sigma_K^2 + E_{t-K-1} \left[P_{t-K} + D_{t-K} \right] \right].
\end{align*}
\]

Assuming a stationary solution to this system of stochastic difference equations, recursive substitution yields equation (7) in the proposition.

After constructing equilibrium returns from the price function (see equation (10)), it is
straightforward to show that the values for \(p^k \) obey the recursion

\[
\mu_k = E_t \left[Q^k_{t+1} \right] = p^{k+1} - R p^k,
\]

which can be solved to yield equation (8). Stationarity implies that for any \(k \), \(E_t \left[Q^k_{t+1} + K \right] = E_t [Q^k_{t+1}] \).

Proof of Corollary 1: Given equation (7), construct returns (10). It is then straightforward to derive the conditional variance of stock returns. The conditional variance is increasing and convex in \(k \), because \(R^{-(K+1-k)} \) is increasing and convex in \(k \) and, with \(\rho_p / R < 1 \), \(\Gamma_k \) is also increasing and convex in \(k \). The conditional mean return is proportional to the conditional return variance (see equation (9)) and thus is also increasing and convex in \(k \).

Proof of Corollary 2: Using the definition of \(f(Q) \), the unconditional mean stock return is

\[
E (Q_{t+1}) = \frac{1}{K+1} \sum_{k=0}^{K} E_k (Q_{t+1}) = \frac{1}{K+1} \sum_{k=0}^{K} \mu_k.
\]

The unconditional variance in stock returns is

\[
\begin{align*}
Var (Q_{t+1}) &= \frac{1}{K+1} \sum_{k=0}^{K} \int (Q - E (Q_{t+1}))^2 \phi (Q; \mu_k, \sigma_k^2) dQ \\
&= \frac{1}{K+1} \sum_{k=0}^{K} \int (Q - \mu_k + \mu_k - E (Q_{t+1}))^2 \phi (Q; \mu_k, \sigma_k^2) dQ \\
&= \frac{1}{K+1} \sum_{k=0}^{K} \left(\sigma_k^2 + (\mu_k - E (Q_{t+1}))^2 \right).
\end{align*}
\]
Finally, unconditional skewness is

\[
E \left[(Q - E(Q_{t+1}))^3 \right] = \frac{1}{K+1} \sum_{k=0}^{K} \int (Q - E(Q_{t+1}))^3 \phi(Q; \mu_k, \sigma_k^2) \, dQ
\]

\[
= \frac{1}{K+1} \sum_{k=0}^{K} \int (Q - \mu_k + \mu_k - E(Q_{t+1}))^3 \phi(Q; \mu_k, \sigma_k^2) \, dQ
\]

\[
= \frac{1}{K+1} \sum_{k=0}^{K} \left[(\mu_k - E(Q_{t+1}))^3 + 3\sigma_k^2 (\mu_k - E(Q_{t+1})) \right].
\]

The third equality uses \(\int (Q - \mu_k) \phi(Q; \mu_k, \sigma_k^2) \, dQ = 0 \) and the fact that skewness is zero for a normal variable, \(\int (Q - \mu_k)^3 \phi(Q; \mu_k, \sigma_k^2) \, dQ = 0 \). The second term under the summation sign can be manipulated to yield the expression in the corollary by noting that

\[
\mu_k - E(Q_{t+1}) = \frac{1}{K+1} \sum_{j=0, j \neq k}^{K} (\mu_k - \mu_j),
\]

and grouping terms together under the last summation sign. \(\blacksquare \)

Proof of Proposition 3: Guess prices to be

\[
P_t^k = p^k + \Gamma_k E_t(F_t) + R^{-(K+1-k)} \sum_{j=0}^{k-1} E_t(\varepsilon_{t-j}^D),
\]

for all \(k \). Obviously for \(k \geq K_a \), the expectations operators drop out because the shocks are in the investors’ information set. Excess stock returns are

\[
Q_t^k = P_t^k - R P_{t-1}^{k-1}
\]

\[
= p^k + \Gamma_k E_t(F_t) + R^{-(K+1-k)} \sum_{j=0}^{k-1} E_t(\varepsilon_{t-j}^D)
\]

\[
- R \left(p^{k-1} + \frac{(\rho_F/R)^{K+2-k}}{1 - (\rho_F/R)^{K+1}} E_{t-1}(F_{t-1}) + R^{-(K+2-k)} \sum_{j=0}^{k-2} E_{t-1}(\varepsilon_{t-1-j}^D) \right).
\]
for any period $1 \leq k \leq K_a - 1$. Because

\[
E_t(F_t) = \rho_F E_{t-1}(F_{t-1}) + E_t(\varepsilon_t^F) = \rho_F E_{t-1}(F_{t-1}) + \frac{\sigma_F^2}{\sigma_F^2 + \sigma_{SF}^2} S_t^F,
\]

the expression for returns reduces to

\[
Q_t^k = p^k - R p_t^{k-1} + \Gamma_k \frac{\sigma_F^2}{\sigma_F^2 + \sigma_{SF}^2} S_t^F + \frac{\sigma_D^2}{\sigma_D^2 + \sigma_{SD}^2} S_t^D.
\]

Above, I used

\[
E_t(F_t) = E_{t-1}(F_{t-1}), E_t(\varepsilon_{t-1}^D) = E_{t-1}(\varepsilon_{t-1}^D), \ldots, E_t(\varepsilon_{t-k+1}^D) = E_{t-1}(\varepsilon_{t-k+1}^D),
\]

knowing that time t signals are not informative about $t - n$ shocks for any $n > 0$. For period $k = K_a$,

\[
Q_t^k = P_t^k - R P_{t-1}^{k-1}
\]

or rearranging,

\[
Q_t^k = p^k - R p_t^{k-1} + \Gamma_k \rho_F [F_{t-1} - E_{t-1}(F_{t-1})] + \Gamma_k \varepsilon_t^F + R^{-(K+1-k)} \sum_{j=0}^{k-2} E_{t-1} \left(\varepsilon_{t-1-j}^D \right) - R \left(p_t^{k-1} + \frac{(\rho_F/R)^{K+2-k}}{1 - (\rho_F/R)^{K+1}} E_{t-1}(F_{t-1}) + R^{-(K+2-k)} \sum_{j=0}^{k-2} E_{t-1} \left(\varepsilon_{t-1-j}^D \right) \right),
\]

or rearranging,

\[
Q_t^k = p^k - R p_t^{k-1} + \Gamma_k \rho_F [F_{t-1} - E_{t-1}(F_{t-1})] + \Gamma_k \varepsilon_t^F + R^{-(K+1-k)} \left\{ \varepsilon_t^D + \sum_{j=0}^{k-2} \left[\varepsilon_{t-1-j}^D - E_{t-1} \left(\varepsilon_{t-1-j}^D \right) \right] \right\}.
\]
Finally, for \(k > K_a \), returns take the same form with the same conditional moments as in Corollary 1.

It is now easy to construct conditional return moments. For variance, and for any period \(1 \leq k \leq K_a - 1 \),

\[
Var_{t-1} \left(Q_t^k \right) = \Gamma_k^2 \frac{\sigma_F^4}{\sigma_F^2 + \sigma_{SF}^2} + R^{-2(K+1-k)} \frac{\sigma_D^4}{\sigma_D^2 + \sigma_{SD}^2},
\]

which is increasing and convex in \(k \). For period \(k = K_a \),

\[
Var_{t-1} \left(Q_t^k \right) = \Gamma_k^2 \rho_F^2 Var_{t-1} \left[F_{t-1} - E_{t-1} \left(F_{t-1} \right) \right] + \Gamma_k^2 \sigma_F^2 \\
+ R^{-2(K+1-k)} \left\{ \frac{\sigma_D^2}{\sigma_D^2 + \sigma_{SD}^2} \sum_{j=0}^{k-2} Var_{t-1} \left[\varepsilon_{t-1-j}^D - E_{t-1} \left(\varepsilon_{t-1-j}^D \right) \right] \right\}.
\]

In addition,

\[
E_{t-1} \left(\varepsilon_{t-1}^D \right) = \frac{\sigma_D^2}{\sigma_D^2 + \sigma_{SD}^2} S_{t-1}^D,
\]

\[
Var_{t-1} \left(\varepsilon_{t-1}^D \right) = \frac{\sigma_D^2 \sigma_{SD}^2}{\sigma_D^2 + \sigma_{SD}^2},
\]

and

\[
Var_{t-1,K_a-1} \left[F_{t-1} - E_{t-1} \left(F_{t-1} \right) \right] \]
\[
= Var_{t-1,K_a-1} \left[\varepsilon_{t-1}^F - E_{t-1} \left(\varepsilon_{t-1}^F \right) + \cdots + \rho_{K_a-2}^F \left(\varepsilon_{t-K_a+1}^F - E_{t-K_a+1} \left(\varepsilon_{t-K_a+1}^F \right) \right) \right] \]
\[
= \frac{\sigma_F^2 \sigma_{SF}^2}{\sigma_F^2 + \sigma_{SF}^2} \left\{ 1 + \rho_F^2 + \cdots + \rho_{K_a-2}^F \right\}.
\]

For \(k \leq K_a \),

\[
Var_{t-1} \left(Q_t^k \right) > Var_{t-2} \left(Q_{t-1}^{k-1} \right).
\]
Furthermore,

\[\text{Var}_{t-1} \left(Q_t^K \right) > \text{Var}_t \left(Q_{t+1}^{K+1} \right) \]

is possible if the arrival of information from past shocks is relevant enough. In that case the path of conditional variance displays two distinct periods of convexity. Finally, knowing that \(\mu_k = \gamma \text{Var}_{k+1} \left(Q_{t+1}^{k+1} \right) \), it is possible to recover the constants \(p^k \) verifying that the price function above is an equilibrium price. \(\square \)

Calculations in the many firm case: Here I derive several unconditional moments of aggregate returns including skewness, which is given in the main text in equation (15). Using the definition of \(f(Q) \), for a stock market composed of \(N \) firms, the unconditional mean stock return is

\[
E(Q_{Mt+1}) = \frac{1}{K+1} \sum_{k=0}^{K} E_k(Q_{Mt+1}) = \frac{1}{K+1} \sum_{k=0}^{K} \frac{1}{N} \sum_{i=1}^{N} \mu_i^k.
\]

The unconditional variance in stock returns is

\[
\text{Var}(Q_{Mt+1}) = \frac{1}{K+1} \sum_{k=0}^{K} \int (Q - E(Q_{t+1}))^2 \phi(Q; \mu_k^M, \sigma_{M,k}^2) \, dQ
\]

\[
= \frac{1}{K+1} \sum_{k=0}^{K} \int (Q - \mu_k^M + \mu_k^M - E(Q_{t+1}))^2 \phi(Q; \mu_k^M, \sigma_{M,k}^2) \, dQ
\]

\[
= \frac{1}{K+1} \sum_{k=0}^{K} \left(\sigma_{M,k}^2 + (\mu_k^M - E(Q_{t+1}))^2 \right).
\]
Unconditional skewness is

\[
E \left[(Q_{Mt} - E(Q_{Mt}))^3 \right] = \frac{1}{K+1} \sum_{k=0}^{K} \int (Q - E(Q))^3 \phi(Q,k) \, dQ
\]

\[
= \frac{1}{K+1} \sum_{k=0}^{K} \int \left((Q - \mu_k^M)^3 + (\mu_k^M - E(Q))^3 \right) \phi(Q,k) \, dQ
\]

\[
+ \frac{3}{K+1} \sum_{k=0}^{K} \int (Q - \mu_k^M)^2 (\mu_k^M - E(Q)) \phi(Q,k) \, dQ
\]

\[
+ \frac{3}{K+1} \sum_{k=0}^{K} \int (Q - \mu_k^M) (\mu_k^M - E(Q))^2 \phi(Q,k) \, dQ,
\]

or

\[
E \left[(Q_{Mt} - E(Q_{Mt}))^3 \right] = \frac{1}{K+1} \sum_{k=0}^{K} (\mu_k^M - E(Q))^3 + \frac{3}{K+1} \sum_{k=0}^{K} (\mu_k^M - E(Q)) \sigma_{M,k}^2.
\]

Expressing market returns as a sum of firm-level returns leads to

\[
= \frac{1}{N^3} \sum_{i=1}^{N} E \left[(Q_{it} - E(Q_{it}))^3 \right]
\]

\[
+ \frac{3}{K+1} \frac{1}{N^3} \sum_{k=0}^{K} \sum_{i=1}^{N} \sum_{i' \neq i} (\mu_k^i - E(Q_i))^2 (\mu_k^{i'} - E(Q_{i'})) + \frac{3}{K+1} \frac{1}{N^3} \sum_{k=0}^{K} \sum_{i=1}^{N} (\mu_k^i - E(Q_i)) \sum_{i' \neq i} \sigma_{i,k}^2
\]

\[
+ \frac{6}{K+1} \frac{1}{N^3} \sum_{k=0}^{K} \sum_{i=1}^{N} \sum_{i' > i} \sum_{l > i'} (\mu_k^i - E(Q_i)) (\mu_k^{i'} - E(Q_{i'})) (\mu_k^l - E(Q_l)).
\]
Appendix B: Model with Correlated Cash Flows

In the correlated cash-flow case, firm i’s persistent dividend factor is $F_{it} = \rho_{Fi} F_{it-1} + \varepsilon_{it}^F$, $0 \leq \rho_{Fi} \leq 1$, with $\varepsilon_{it}^F \sim N(0, \sigma_{F_i}^2)$, and the transitory component is $\varepsilon_{it}^D \sim N(0, \sigma_{D_i}^2)$. For any two firms i and i', $E[\varepsilon_{it}^D \varepsilon_{it'}^D] = \sigma_{ii'}^D$ and $E[\varepsilon_{it}^F \varepsilon_{it'}^F] = \sigma_{ii'}^F$ when $s = 0$, and zero otherwise. I am interested in the case in which shocks have one or more common components that affect the cash flows of all firms in the economy in the same direction, $\sigma_{ii'}^D, \sigma_{ii'}^F \geq 0$. For simplicity, $E[\varepsilon_{it}^D \varepsilon_{it'}^F] = 0$ for any two firms i and i' and any s. As in the main text, all dividend shocks are homoscedastic.

Denote by $Q_t^k = \left(Q_{it}^k, ..., Q_{Nt}^k\right)^T$ the column vector of time t stock returns. The superscript k indicates that firms of type k (if there are any) announce at time t. Again, with fixed heterogeneity in firm announcements, k is a sufficient statistic for the distribution of firms at t.

Assuming that returns are jointly conditionally normal

$$Q_{t+1}^{k+1} | t \sim N(\mu_k, V_k),$$

the investors’ problem yields the first-order necessary and sufficient condition

$$\theta_t = \gamma^{-1} V_k^{-1} \mu_k.$$

Imposing the equilibrium condition that the representative investor holds all shares in the market, $\theta_t = 1$, gives $\mu_k = \gamma V_k 1$.

Following the steps of the proof of Proposition 1 and assuming stationarity yields the equilibrium price function for firm i:

$$P_{it}^{k_i} = p_i^{k_i} + \Gamma_{k_i} F_{it} + R^{-(K+1-k_i)} \sum_{j=0}^{k_i-1} \varepsilon_{it-j}^D.$$
The expression for the constants $p_i^{k_i}$ < 0 is the same as in equation (8).

To solve for the equilibrium values of $\{\mu_k, V_k\}_k$, use the price function above to express excess returns as

$$Q_{it}^{k_i} = p_i^{k_i} - R p_i^{k_i-1} + \Gamma_{k_i} \varepsilon_{it}^F + R^{-(K+1-k_i)} \varepsilon_{it}^D,$$

for any k_i. Then, the elements of V_k are

$$\sigma_{ik}^2 = Var_t [Q_{it+1}^{k_i}] = \Gamma_{k_i+1}^2 \sigma_{Ft}^2 + R^{-2(K-k_i)} \sigma_{Dt}^2,$$

$$\sigma_{ii',k} = Cov_t [Q_{it+1}^{k_i}, Q_{it'1+1}^{k_i'}] = \Gamma_{k_i+1} \Gamma_{k_i'+1} \sigma_{Ft}^2 + R^{-(2K-k_i-k_i')} \sigma_{Dt}^2.$$

For each firm i, the conditional mean and volatility of the stock return increase monotonically and are convex in k_i, all else equal. As in the uncorrelated cash flow case, the conditional stock return variance increases with k_i, all else equal.

In this model, as in the uncorrelated cash flow case, the stock market equilibrium has a conditional CAPM representation. Let $\alpha \equiv 1/N$ and write $Q_{Mt}^k = \alpha^t Q_t^k$. Then, $\mu_k^M \equiv E_t [Q_{Mt+1}^{k_i+1}] = \alpha^t \mu_k$ and $\sigma_{M,k}^2 \equiv E_t \left[\left(Q_{Mt+1}^{k_i+1} - \mu_k^M \right)^2 \right] = \alpha^t V_k \alpha$. Then, using $\mu_k = \gamma V_k \alpha$ gives:

$$\mu_k = \beta_k \mu_k^M,$$

where $\beta_k \equiv Cov_k (Q_t^k, Q_{Mt}^k) / \sigma_{M,k}^2$ and $\alpha^t \beta_k = 1$.

If firm i has a high expected return around its announcement event, it must also be that $\beta_{k_i}^i$ is high around the event. This systematic risk is driven by the volatility associated with the information flow in common factors. For example, if $F_{it} = F_t$ for all t and i, and $\sigma_{Dt}^0 = 0$, then the economy has only one common factor, which is persistent. Shocks to this common factor, ε_t^F, affect stock returns of firms differently depending on how far each firm is from its respective payout event. This timing explains the dynamics in the conditional stock
return moments because proximity to a payout event determines the impact of (systematic) information on returns. Consistent with this model prediction, Patton and Verardo (2010) show that daily firm betas increase by an economically and statistically significant amount around earnings announcement events.

For comparability with the results in the main text, I present here the stochastic discount factor in the general case:

\[m_{t+1}^{k+1} = \gamma \exp \left[-\gamma \mathbf{1}' \mu_{k+1} - \gamma \mathbf{1}' \varepsilon_{t+1}^{k+1} \right] , \]

where \(\mu_{k+1} \) is the vector of conditional mean returns and \(\varepsilon_{t+1}^{k+1} \) is the vector of common innovations to the transitory and persistent dividend shocks with variance \(V_{k+1} \). The cross-sectional dispersion of firm events determines \(V_{k+1} \).

After deriving the equilibrium conditional distribution of stock returns, it is straightforward to derive the equilibrium unconditional distribution following the same steps as in the main text. For \(K \geq 1 \), the unconditional distribution of stock returns for firm \(i \) is a mixture of normals distribution with density

\[f(Q^i) = \frac{1}{K+1} \sum_{k=0}^{K} \phi \left(Q^i; \mu^i_k, \sigma^2_{ik} \right) , \]

where \(\phi(.) \) is the normal density function, and for \(K = 0 \), returns are unconditionally normally distributed. The expressions for the unconditional mean and variance of stock returns and the unconditional skewness in stock returns are the same as in the main text. With correlated cash flows it is not possible to sign skewness because when \(k_i \) changes, other firms’ event time, say \(k_{i'} \), also changes which may lead to non-monotonicity in the conditional return covariance between \(i \) and \(i' \) and hence in conditional mean returns for firm \(i \). However, in numerical examples studied this effect is dominated and firm-level skewness is positive.
The unconditional distribution of aggregate market returns is a mixture of normals distribution with
\[f(Q_M) = \frac{1}{K + 1} \sum_{k=0}^{K} \phi(Q_M; \mu^M_k, \sigma^2_{M,k}), \]
and skewness in aggregate stock returns is as in equation (15) plus the following term:
\[\frac{6}{K + 1} \frac{1}{N^3} \sum_{k=0}^{K} (\mu^M_k - E(Q_M)) \sum_{i=1}^{N} \sum_{i' > i} \sigma_{ii',k}. \]
This term is likely to be positive because the return covariance is likely to be highest at event dates \(k \), where mean returns \(\mu^M_k \) are also likely to be higher. Hence in the correlated cash flow case, market skewness tends to be higher than in the uncorrelated case and there tends to be less conditional asymmetry in stock return correlations. However, numerical examples show that qualitatively the results in the main text apply also to this more general model.
References

Notes

1For models of positive skewness at the firm level, see Acharya et al. (forthcoming), Dye (1990), Duffee (2002), Grullon, Lyandres, and Zhdanov (forthcoming), Hong, Wang, and Yu (2008), and Xu (2007). Hong, Stein, and Yu (2007) develop a model that predicts negatively skewed returns for glamour stocks and positively skewed returns for value stocks.

2The proof is quite lengthy and is omitted but is available upon request.

3The Appendix provides the general formula when there are many firms with correlated cash flow shocks.

4The motivation for allowing the additional firm heterogeneity comes from Cohen et al. (2007), who show that firms that made a preannouncement in the quarter have significantly lower announcement excess returns. This is to be expected as the preannouncement would have removed some of the uncertainty associated with firm earnings. Likewise, it would be expected that with correlated cash flows the firms announcing late in the quarter would have lower announcement excess returns because some uncertainty would have been removed in the announcements of other firms.

5Moreover, empirically, a large K may affect the precision of the skewness estimates. In addition, two facts about the timing of earnings announcements suggest looking at weekly periods. First, earnings announcements are fairly predictable (e.g., Chambers and Penman 1984; Givoly and Palmon 1982). For quarterly announcements, Chambers and Penman estimate that for the representative firm the standard deviation of the actual earnings date minus the estimated date is three to four calendar days. Letting $K = 12$ eliminates some of the concern that investors cannot predict the announcement date as well as they can in the model. Second, firms tend to announce bad news on Fridays (e.g., Damodaran 1989; Penman 1987). Letting $K = 66$ adds a concern for special weekdays that is absent in the model.

6For earnings announcements, observations with an announcement date before the end of
the quarter are dropped.
Figure 1

Skewness in firm-level and aggregate stock returns

The figure plots mean skewness in daily firm-level returns (dashed line) and skewness in the equally weighted market return (solid line), both computed using six months of trading data. Data comprise all firms in CRSP with complete daily return data by semester. Period of analysis is January 1, 1973, to December 31, 2009.
Figure 2

Skewness decomposition

The figure plots co-cov as a fraction of overall market skewness. Skewness is computed using equally weighted portfolios in six months of daily returns. Data comprise all firms in CRSP with complete daily return in the specific year and semester. The sample period is January 1, 1973, to December 31, 2009.
Figure 3
Stock market skewness in various stock market configurations

Panels A through D illustrate variants of the model in Section 2 and panels E and F illustrate the model in Section 3. In the left panels A, C, and E, each stock market consists of two types of firms with cash payout dates separated by k periods, where $k \in \{0, 1, ..., K\}$. In the right panels B, D and F, each stock market consists of $k+1$ different types of firms with cash payout dates of $0, 1, ..., K$. Each panel depicts market skewness (solid line) and mean firm skewness (dashed line). For all panels, parameters are: $K = 12$, $\sigma_D^2 = \sigma_F^2 = 1$, $\rho_F = 0.9$, $\gamma = 5$, and $R = 1.0025$. For panels C and D, firms with cash payout at $k = 11, 12$, have $\sigma_D^2 = \sigma_F^2 = 0.3$. For panels E and F, firms announce earnings at $K_a = 6$, and $\sigma_{SD} = \sigma_{SF} = 0.3$.
Figure 4
Decomposing stock market skewness

Each stock market consists of $k+1$ different types of firms with cash payout dates of 0, 1, ..., and k as in Panel B of Figure 3. The figure depicts market skewness (solid) and its co-skewness component term *co-cov* (dashed). Parameters are: $K = 12$, $\sigma_D^2 = \sigma_F^2 = 1$, $\rho_F = 0.9$, $\gamma = 5$, and $R = 1.0025$.

![Graph showing market skewness and co-skewness components](image-url)
Figure 5

Exceedance correlations in various stock market configurations

Each stock market consists of $k + 1$ different types of firms with cash payout dates of 0, 1, ..., and k as in Panel B of Figure 3. The figure depicts the exceedance correlation in market upturns (solid line) and the ratio of exceedance correlation in downturns to the exceedance correlation in upturns (dashed line). Parameters are: $K = 12$, $\sigma_D^2 = \sigma_F^2 = 1$, $\rho_F = 0.9$, $\gamma = 5$, and $R = 1.0025$.
Figure 6

Contribution of each trading period to stock market skewness

The stock market consists of firms with cash payout dates of 0, 1, ..., and 7. The figure plots the component of normalized skewness, $E (Q_t - E (Q_t))^3 / [E (Q_t - E (Q_t))^2]^{3/2}$, due to each trading period. Parameters are: $K = 12$, $\sigma_D^2 = \sigma_F^2 = 1$, $\rho_F = 0.9$, $\gamma = 5$, and $R = 1.0025$.
Figure 7

Histogram of announcement week

The figure plots the empirical frequency by calendar week of cash payouts (Panel A) and earnings (Panel B) announcements. Data come from the merged Compustat/CRSP quarterly files. The sample period is 1973:Q1 to 2009:Q2. Observations with announcement date before the end of the quarter are dropped.
Figure 8
Skewness and announcement portfolios
The figure plots portfolio return skewness with 10% confidence bands. Portfolios are constructed by grouping firms that announce in the first week of the first quarter in the semester (P_1) with firms that announce in week k of the first quarter in the semester (P_k), $k = 2, ..., 13$. Skewness is calculated using daily returns over six months. Portfolio returns are equally weighted. Portfolios are constrained to have the same number of firms, which is done by randomly dropping firms from the larger portfolios. Confidence bands use the sample standard deviation of the estimated skewness values. Data are obtained from the merged Compustat/CRSP quarterly file and the CRSP daily return file. The sample period is January 1, 1973, to December 31, 2009.
Figure 9
Skewness and announcement portfolios

The figure plots portfolio return skewness with 10% confidence bands. Portfolios are constructed by grouping firms that announce between the first week of the first quarter in the semester (P_1) and week k of the first quarter in the semester (P_k), $k = 2, ..., 13$. Skewness is calculated using daily returns over six months. Portfolio returns are equally weighted. Portfolios are constrained to have the same number of firms, which is done by randomly dropping firms from the larger portfolios. Confidence bands use the sample standard deviation of the estimated skewness values. Data are obtained from the merged Compustat/CRSP quarterly file and the CRSP daily return file. The sample period is January 1, 1973, to December 31, 2009.
Figure 10

Mean firm skewness and announcement portfolios

The figure plots the mean firm return skewness with 10% confidence bands. Portfolios are constructed by grouping firms that announce between the first week of the first quarter in the semester (P_1) and week k of the first quarter in the semester (P_k), $k = 2, ..., 13$. Firm skewness is calculated using daily returns over six months. Portfolios P_k are constrained to have the same number of firms as is done in Figure 9. Confidence bands use the sample standard deviation of the estimated skewness values. Data are obtained from the merged Compustat/CRSP quarterly file and the CRSP daily return file. The sample period is January 1, 1973, to December 31, 2009.
Figure 11

Skewness and calendar week

The figure plots the weekly component of market skewness with 10% confidence bands. Skewness is calculated using daily returns over six months. Portfolio returns are equally weighted. Confidence bands use the sample standard deviation of the estimated skewness values. Data are obtained from the CRSP daily return file. The sample period is January 1, 1973, to December 31, 2009.
Figure 12

Skewness in portfolios of varying size

The figure plots mean skewness in daily returns from portfolios of size N. Skewness is computed using equally weighted portfolio returns and six months of daily data. The portfolios are constructed by randomly ranking the firms and then grouping them. If two firms are in the same portfolio when $N = 25$, then they will also be in the same portfolio for $N = 625$. The dash-dotted line plots firm-level skewness. The solid line, labeled *Market*, plots skewness of equally weighted returns of all firms in CRSP. The sample period is January 1, 1973, to December 31, 2009.
Figure 13
Skewness and announcement portfolios using CAPM residuals
The figure plots portfolio return skewness with 10% confidence bands. Portfolios are constructed by grouping firms that announce in the first week of the first quarter in the semester (P_1) with firms that announce in week k of the first quarter in the semester (P_k), $k = 2, ..., 13$. Skewness is calculated using daily idiosyncratic returns over six months. Portfolio returns are equally weighted. Portfolios are constrained to have the same number of firms, which is done by randomly dropping firms from the larger portfolios. Confidence bands use the sample standard deviation of the estimated skewness values. Data are obtained from the merged Compustat/CRSP quarterly file and the CRSP daily return file. The sample period is January 1, 1973, to December 31, 2009.
Figure 14
Skewness and announcement portfolios using CAPM residuals
The figure plots portfolio return skewness with 10% confidence bands. Portfolios are constructed by grouping firms that announce between the first week of the first quarter in the semester ($P1$) and week k of the first quarter in the semester (Pk), $k = 2, ..., 13$. Skewness is calculated using daily idiosyncratic returns over six months. Portfolio returns are equally weighted. Portfolios are constrained to have the same number of firms, which is done by randomly dropping firms from the larger portfolios. Confidence bands use the sample standard deviation of the estimated skewness values. Data are obtained from the merged Compustat/CRSP quarterly file and the CRSP daily return file. The sample period is January 1, 1973, to December 31, 2009.
Figure 15
Stationary conditional cumulative distributions of earnings announcements
Panel A classifies market upturns (downturns) as quarters preceded by a CRSP value-weighted return above (below) the historical median. Panel B classifies market upturns (downturns) as quarters preceded by a CRSP value-weighted return above the historical 75th percentile (below the 25% percentile). The distribution depicted using a dashed line conditions on market upturns and the distribution depicted using a solid line conditions on market downturns. Data on earnings announcements come from the merged Compustat/CRSP quarterly files. The sample period is 1973:Q1 to 2009:Q2. Observations with announcement dates before the end of the quarter are dropped.